
Best Practices for Implementing

CI/CD Pipelines

Introduction

According to Fortune Business Insights, the global market size for DevOps is expected

to grow at a compounded annual growth rate of 19.1% from 2018 to 2026. By 2026, the

market size for DevOps is expected to cross US$14.9 billion. This growth is largely

attributed to the adoption of cloud as companies migrate their legacy workloads to

the cloud and develop cloud native applications using Microservices architecture.

01

Capital One, has a ‘cloud-first’ policy which means Ideas for improving customer

experience are quickly converted into digital products (software applications and services).

All the applications are designed for the cloud using Microservices Architecture.

Functionalities are built as loosely coupled services using DevOps on the cloud approach,

enabled by AWS services. The company has reported that they have significantly reduced

the time required to provision application infrastructure by using AWS services and DevOps.

There are numerous such case studies where DevOps and more specifically, CI/CD pipelines

have enabled collaboration and automation so that developers can focus on building

functionalities without having to worry about infrastructure requirements.

Continuous Integration and Continuous Deployment (CI/CD) pipeline refers to the process

followed to incrementally release new software features and functionalities. CI/CD pipelines

are an important component of DevOps that aims to improve delivery through automation.

While the steps in the CI/CD pipeline can be executed manually, automation ensures that

the development team is able to deploy quality code into production faster.

Dr. Mik Kersten, Best-Selling Author and CEO at Tasktop, says, "CI/CD is about creating a fast

feedback loop that enables teams to deliver value to their customers continuously, by

automating the build, test, and deployment process and integrating code changes

continuously."

In this blog post, we will look at the best practices for implementing CI/CD pipelines and

conclude by listing the benefits of automating CI/CD pipelines.

02

Managing Dependencies

A dependency refers to a component or resource that is required to build, test, or deploy a

software application or system. This can include external libraries or frameworks, build tools,

testing tools, and other software or hardware components that are necessary for the

development and deployment process. Here are a few best practices for managing

dependencies:

Use a dependency management tool: There are several tools available that can help

manage dependencies in a CI/CD environment. For example, you can use tools like

Maven, Gradle, or npm to manage dependencies for Java, Android, and JavaScript

projects, respectively. These tools allow you to specify the dependencies for your project

in a configuration file, and they will automatically download and manage the required

dependencies for you.

Use a package registry: A package registry is a centralized repository that stores

packages that can be used as dependencies in your project. By using a package registry,

you can easily manage the versions of your dependencies and ensure that the correct

versions are being used in your project. Some examples of package registries include

Maven Central, npmjs.com, and PyPI (Python Package Index).

Use containers: Containerization technology such as Docker allows you to package your

application and its dependencies into a single container image, which can be easily

deployed and run in any environment. This can help ensure that your application always

has the correct dependencies, regardless of the environment in which it is being run.

Use a dependency management service: Some CI/CD platforms offer built-in

dependency management services that allow you to manage your dependencies

directly from the platform. For example, AWS CodePipeline offers a service called AWS

CodeArtifact that can be used to store and manage dependencies for your project.

Leveraging Containerization

Containerization is a method of packaging software applications so that they can be run in

multiple different environments without requiring any changes to the underlying

infrastructure. This is achieved by packaging the application, along with all its

dependencies, into a container. The container is a lightweight, standalone, executable

package that includes everything the application needs to run, including the application

code, system tools, libraries, and runtime. Jez Humble, Site Reliability Engineer at Google,

says, "Containers provide a lightweight, portable way to package and distribute software,

making it easier to deploy and run applications consistently across different environments."

Let us look at a case study to understand how companies are effectively leveraging

containerization. Workflow management software provider, Weever Apps, uses Docker

containers to empower developers to write code locally and deploy in the cloud without

code changes. This approach saves time and helps the company accelerate feature

releases. Here are some of the best practices for containerization:

03

Use versioned container images: By using versioned container images, you can easily

track and roll back changes to your application if necessary. This can be especially useful

in a CI/CD environment where new versions of your application are being deployed

regularly.

Use small and lightweight container images: Smaller container images will be faster to

build and deploy, which can help improve the efficiency of your CI/CD pipeline. You can

use tools like multi-stage builds and image squashing to reduce the size of your container

images.

Use a container registry: A container registry is a centralized repository for storing and

managing container images. By using a container registry, you can easily store and

retrieve your container images as part of your CI/CD pipeline. Some examples of

container registries include Docker Hub, Google Container Registry, and Amazon Elastic

Container Registry (ECR).

04

Testing in Multiple Environments

In a CI/CD pipeline, testing plays a critical role in ensuring the quality and reliability of the

software being developed. There are various types of tests that can be included in a CI/CD

pipeline, including:

Use a container orchestration platform: A container orchestration platform, such as

Kubernetes or AWS ECS, allows you to automate the deployment and management of

your containerized applications. By using a container orchestration platform, you can

ensure that your applications are deployed and scaled in a consistent and reliable

manner.

Use security scanning: Security scanning involves analyzing your container images for

vulnerabilities and security issues. There are several tools available, such asanchore, Aqua

Security, and Twistlock, that can be used to perform container scanning as part of your

CI/CD pipeline.

Unit tests : Unit tests are small, isolated tests that verify the functionality of individual units of

code.

Integration tests : Integration tests test the integration of different units of code, and they

ensure that these units are working together as expected.

End-to-end tests : End-to-end tests, also known as acceptance tests, test the entire system

from end to end to ensure that it is working as expected.

Key things to implement to test CI/CD Pipelines Effectively

Test Automation Framework: A test automation framework allows you to automate the

execution of your tests and makes it easy to run tests in multiple environments. There are

several test automation frameworks available, such as Selenium, Appium, and Cypress,

that can be used to automate tests for web, mobile, and API testing.

Cloud-based Testing Platform: Cloud-based testing platforms, such as BrowserStack or

Sauce Labs, allow you to run tests on a wide range of browser and device configurations

without the need to maintain your own testing infrastructure. This can make it easier to test

in multiple environments and reduces the overhead of maintaining your own test

infrastructure.

05

Static Code Analysis: Static code analysis involves analyzing the source code of your

application for vulnerabilities and security issues. There are several tools available, such as

Fortify, Checkmarx, and SonarQube, that can be used to perform static code analysis as

part of your CI/CD pipeline.

Dynamic Testing: Dynamic testing involves executing your application and testing it for

vulnerabilities and security issues. There are several tools available, such as ZAP, Burp Suite,

and Nessus, that can be used to perform dynamic testing as part of your CI/CD pipeline.

Container Scanning: Container scanning involves analyzing the container images used in

your application for vulnerabilities and security issues. There are several tools available,

such as Anchore, Aqua Security, and Twistlock, that can be used to perform container

scanning as part of your CI/CD pipeline.

Secrets Management: Secrets management involves securely storing and managing

secrets, such as passwords and API keys, that are used in your application. There are

several tools available, such as Hashicorp Vault, AWS Secrets Manager, and Azure Key

Vault, that can be used to manage secrets as part of your CI/CD pipeline.

Integrating Security Controls

Integrating security controls into a CI/CD pipeline involves incorporating security checks and

controls into the various stages of the pipeline to ensure that security is an integral part of the

development and deployment process. Let us look at some of the best practices to build

secure software using DevOps approach:

Version Control System: By storing your tests in a version control system such as Git, you

can easily track changes to your tests and ensure that the correct versions are being run

in different environments. This can be especially useful if you have multiple teams working

on different environments and need to ensure that the correct tests are being run in each

environment.

Environment Variables: Environment variables allow you to configure your tests to run in

different environments by setting variables that are specific to each environment. For

example, you can use environment variables to set different URLs for testing in different

environments, or to set different credentials for accessing different environments.

06

Benefits of DevOps Approach to Software Development:

Build and deployment: Automation tools, such as Jenkins, can be used to automate the

build and deployment process, allowing teams to automatically build, test, and deploy

code changes to production.

Testing: Automation tools can be used to automate the testing process, allowing teams to

automatically run unit tests, integration tests, and performance tests as part of the build

process.

Infrastructure provisioning and configuration: Tools such as Terraform and Ansible can be

used to automate the provisioning and configuration of infrastructure, such as servers,

networks, and storage.

Monitoring and Alerting: Automation tools can be used to automate the monitoring and

alerting process, allowing teams to set up alerts for important events and triggers, such as

application errors or infrastructure issues.

Automation plays a key role in a DevOps workflow, as it allows teams to automate various

tasks and processes to improve efficiency, reduce errors, and speed up delivery. In

conclusion, here are a list of tasks that can be automated in a DevOps workflow:

Conclusion - Role of Automation in DevOps

According to Donovan Brown, Partner Program Manager at Microsoft, “DevOps is

about bringing development and operations together in order to build, test, and

release software faster and more reliably."

In a research to find out why companies are adopting DevOps as part of their agile

software development strategy, Boston Consulting Group reported the following benefits:

Reduce defects by 70%

Release new features more frequently

Accelerate product to market by 2 times

Decrease cost by 30% through virtualized infrastructure

Continuous Integration and Continuous Delivery (CI/CD) pipelines play a critical role in

enabling organizations to adopt a DevOps approach to software development and

delivery, helping them to deliver high-quality software faster and more reliably.

CI/CD pipelines help to automate the software development and deployment process,

making it easier for developers to build, test, and deploy their code changes. This

approach reduces the time it takes to get new code changes to users and improves the

overall quality and stability of the software.

This article is brought to you by Softura. For more information, visit www.softura.com and

follow us on LinkedIn. https://www.linkedin.com/company/softura/

So, how do CI/CD pipelines help companies realize the
DevOps benefits?

12Farmington Hills, MI | Chicago, IL | Indianpolis, IN | Pittsburgh, PA | Atlanta, GA | Houston, TX
Tampa Bay, FL | Charlotte, DC | Chennai, IN | Bangalore, IN | Vadodara, IN | Toronto, CA

(844) 791- 0545 | info@softura.com | www.softura.com

Contact Us at

Our Offices

What your company can do to get started with automating CI/CD pipelines?
Manage dependencies

Leverage containerization

Test software in multiple environments

Integrate security controls

